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Abstract
A central challenge of cross-situational word learning is re-
taining word-referent mappings across exposures. We evalu-
ate Memory-Bound Pursuit (MBP), a hypothesis-testing model
of cross-situational word-learning which aims to account for
learners’ memory constraints via a single parameter target-
ing the number of words that can be learned concurrently.
Here, we show that by varying this parameter with age, MBP
can capture both children’s and adults’ cross-situational word-
learning success under varying levels of ambiguity. We also
present new experimental findings supporting novel predic-
tions made by MBP about the retention of word-referent map-
pings across intervening exposures. These findings suggest
that MBP provides a strong baseline model of cross-situational
word learning, capturing both developmental trends and exper-
imental evidence of memory limitations for word learning.
Keywords: memory; word learning; language acquisition; sta-
tistical learning; cross situational word learning

Introduction
Word learning presents a substantial challenge, with factors
such as language abilities, attention, and memory affecting
word learners’ success. Research suggests a key component
of word learning is resolving ambiguity across multiple utter-
ances of a word: cross-situational word learning. Both adult
and child learners track the co-occurrences of words and ref-
erential meanings across exposures to correctly infer word-
object mappings (Yu & Smith, 2007; Trueswell et al., 2013).

However, a critical part of cross-situational word learn-
ing is the retention of previously formed semantic mappings
(Vlach, 2019). While word-learning models sometimes ad-
dress retention constraints by adding a parameter for forget-
ting mappings (Kachergis et al., 2012; Stevens et al., 2017;
i.a.), most models focus primarily on the mechanisms of
tracking and updating the word-meaning associations. Here,
we evaluate a memory-limited model of cross-situational
word learning1 (Soh & Yang, 2021) that includes a motivated
parameter capturing memory constraints on word learning: a
limit on the number of words a learner can be learning con-
currently in a local temporal context.

1https://github.com/csohyue/memory bound pursuit

Drawing on the modal model of memory (Atkinson &
Shiffrin, 1968; Healy & McNamara, 1996), the Pursuit word
learning model presented in Stevens et al. (2017) was
amended to account for these memory constraints. More
specifically, Soh and Yang (2021) implemented two distinct
ways of storing hypothesized word meanings: the memory
buffer, which stores a limited number of words (labels) and
their hypothesized meanings, and the lexicon, where word-
meaning pairs are permanently stored once sufficiently con-
firmed. Crucially, the memory buffer is finite and quite small:
only a limited number of words can be learned concurrently.
The lexicon, in contrast, is unbounded, containing all suffi-
ciently confirmed semantic mappings. This model is dubbed
Memory-Bound Pursuit (MBP). See Figure 1 for details on
the learning algorithm. MBP learns by storing word-meaning
hypotheses in the size-limited memory buffer and moving
them to the lexicon only if the hypothesized meaning dom-
inates its competitor meanings, a process described in more
detail below. The model contains a single, psychologically
motivated parameter: the size of memory buffer, with no ad-
ditional tuned parameters. Here we present an overview of
this model, test the model by simulating two studies pre-
viously conducted with children and adults, and finally test
several novel predictions of the model by conducting a new
cross-situational word-learning experiment with adults. Our
findings show that MBP captures developmental differences
in cross-situational word learning with a single parameter
and successfully predicts adult performance in a new cross-
situational word learning experiment.

Memory Bound Pursuit
Unlike previous cross-situational word learning models,
MBP has only a single parameter: the buffer’s size. While
learners of all ages have large lexicons of established mean-
ings, we suggest memory buffer size increases with age. In-
dividual variation at each age is modeled by sampling from
a normal distribution with a standard deviation of 1. This
distribution is centered at 4 for 5- to 7-year-old children and



10 for adults, which is within the range of previous estimates
of human processing capacity. These values cover a range
of published findings (see Soh & Yang, 2021 for more de-
tails), including the studies simulated below. A key contri-
bution of this model is that by changing only one parameter–
the memory buffer size–the model captures cross-situational
word learning performance across different age groups.

Figure 1: A decision tree for MBP in the process of updating
the association strengths in the memory buffer. w is the word
being learned, L the learned lexicon, Mu the set of referents
present in the utterance, hmax the best hypothesis for a word,
hcomp the next best hypothesis, A the set of association scores
for words and their hypothesized meanings, and h0 is the ini-
tial hypothesis selected by a principle of mutual exclusion.

The basic schema of the model is shown in Figure 1. MBP
is a hypothesis-testing model, so as it learns, the model con-
siders only its single best hypothesized referent. The learning
occurs only in the memory buffer, which is limited in size,
and when a word’s meaning is “successfully learned” (i.e. the
best meaning exceeds twice the score of its closest competi-
tor), the word-meaning pair enters the lexicon. Words and
corresponding meanings are “forgotten” (i.e. removed) from
the buffer when it reaches capacity. A word is learned if it
can stay in memory long enough for a meaning to receive
sufficient confirmation, relative to competitors.

Simulating prior experimental findings
First, we compare cross-situational word learning perfor-
mance of MBP for adults and children by simulating two
published studies (Yu & Smith, 2007; Suanda et al., 2014).
Both studies asked participants to learn words across mul-
tiple exposures with varying levels of referential ambiguity.
This training was followed immediately by a test, asking par-

ticipants to select each word’s target referent from among a
set of other previously seen objects: thus, we assume that the
content of the memory buffer is still accessible to the par-
ticipant. In a test trial, MBP first checks its lexicon: if the
word is in the lexicon and the learned referent is a possible
option, it selects the learned referent. Next, the model checks
its memory buffer: if the word is in the memory buffer, then it
samples from the options weighted by the association value,
following Luce’s choice axiom. Finally, if the word in ques-
tion is neither in the lexicon nor in the memory buffer, the
model selects randomly from the options provided.

Because MBP randomly selects its hypotheses and the
multiple choice selection has stochastic behavior, the model
was run 300 times with accuracy averaged across the runs.
We then compared the model’s average performance to see if
it lies within the human 95% confidence intervals.This value
is stable across simulated sample sizes above 300 runs and
offers a conservative measure of model performance.

Yu & Smith (2007)
In the first study that we simulate, adult participants were
exposed to learning trials with 2, 3, or 4 nonce words and
the corresponding number of referents (Yu & Smith, 2007).
With increased ambiguity, participants’ accuracy decreased.
This experiment was run with adult participants; accordingly,
MBP was set to have a mean buffer size of 10.

Experimental Results As expected, MBP captures the
main result: increased ambiguity leads to decreased accu-
racy. Moreover, MBP also has overlapping confidence in-
tervals with the reported results: see Table 2. This indicates
the MBP model accurately captures human behavior.

Table 1: Yu and Smith (2007) experimental simulation results

4x4 3x3 2x2
Reported 0.53 0.76 0.89

(0.37-0.69) (0.62–0.90) (0.79–0.99)
MBP 0.52 0.77 0.96

Note. The bold indicates that the average performance lies within
95% confidence interval (CI) of the reported human results.

Suanda et al. (2014)
Next, we simulate a child study, which was conducted to ex-
amine the role of contextual ambiguity in children’s word
learning (Suanda, Mugwanya, & Namy, 2014). Children
were asked to learn 8 nonce words, and like the previous ex-
periment, there were three degrees of ambiguity. Here, ambi-
guity was captured by the contextual diversity, i.e. the num-
ber of different sets of stimuli that a word–object pairing co-
occurred with across learning trials. The central finding was
that increased contextual diversity (and thus decreased ambi-
guity across trials) improved cross-situational word learning.

Experimental Results MBP again captures the main re-
sult: decreased contextual diversity (and increased ambigu-



ity) leads to lower accuracy (Table 1). By setting the average
size of the memory buffer to 4 (rather than 10 for adults),
MBP begins to approximate child learning behavior. It pre-
dicts a sizable difference in performance between children
and adults here, which is not experimentally verified but is
a likely adult baseline.

Table 2: Suanda et al. (2014) experimental simulation results

HighCD MedCD LowCD
Reported 0.48 0.39 0.34

(0.44-0.52) (0.35-0.43) (0.31-0.37)
MBP - 4 0.52 0.49 0.47
MBP - 7 0.83 0.79 0.75

Note. The bold indicates that average performance lies within the
95% CI of the reported human results.

Discussion
These results suggest that MBP is a compelling baseline
model for word learning. While MBP does not completely
capture the exact means child participants, the trends are cap-
tured. Moreover, the 95% CI of the model runs overlaps with
human CI’s, suggesting that the results are within the vari-
ation expected by MBP. While additional apparatus will no
doubt improve the model’s empirical coverage, its success in
accounting for results across different age groups by altering
a single, psychologically motivated parameter is remarkable.
By changing only the size of learners’ memory buffer, MBP
can accurately predict children and adults’ performance in
multiple cross-situational word learning tasks, capturing the
effects of referential ambiguity and of developmental differ-
ences.

Testing novel predictions
The Memory-Bound Pursuit model also makes unique novel
predictions regarding the effect of confirmation on retention.
The model separates the size-limited “memory buffer,” where
words and their meaning hypotheses are stored, from the size-
unlimited “lexicon,” where words with hypothesized mean-
ings that dominate competitor meanings are stored. Items
in the buffer may be removed as new items enter whereas
items in the lexicon are retained through other learning expo-
sures. Here, we conducted a new experiment testing this dis-
tinction by manipulating whether a particular word-referent
mapping can enter the lexicon or must instead remain in the
memory buffer. Critically, these manipulated learning expo-
sures occurred either before or after an intervening “flush,” a
large set of learning exposures that were predicted to remove
most mappings from the buffer but not the lexicon. We then
compared performance for words stored in either the memory
buffer or the lexicon, before and after the intervening flush.

Subjects
Adults (N=80; 40 per condition) were recruited on Prolific
and participated online through PCIbex (Zehr & Schwarz,

2018). All were native speakers of English and provided in-
formed consent. Participation lasted 10-20 minutes.

Stimuli
For visual stimuli, we chose four different but readily identi-
fiable photographic images as referents for 90 common basic-
level object labels, resulting in 360 images. Three of the im-
ages were used for learning, and one for testing. We had 18
nonce words, which followed English phonological rules.

Experimental Design
Subjects were exposed to 18 nonce words, each occurring in
3 trials, resulting in a total of 54 trials during learning. There
were four blocks of learning trials, with the target words pre-
sented in Blocks 2 and 4 (see Table 3). In the first block,
participants saw 10 trials, each featuring a different nonce
word. This “warm-up” block was designed to saturate par-
ticipants’ memory buffer. In the second block, participants
learned their first set of target words, with 3 exposures to each
of 4 nonce words, all interleaved. The third block consisted of
the intervening ”flush,” with exposures to the same words as
in the warm-up phase, with 2 exposures per word, interleaved
across words. Finally, participants learned their second set of
target words in Block 4, receiving 3 exposures to each of 4
new nonce words, interleaved, just as in Block 2.

Table 3: Experimental design

Block # Nonce words # Exposures
1 Warm-up 10 1
2 Target Pre-flush 4 3
3 Intervening Flush 10 2
4 Target Post-flush 4 3

5 Testing 18 –

The visual display for each trial consisted of four refer-
ent images arranged in a rectangle and accompanied by a
pre-recorded labeling utterance from a native English female
speaker (e.g., “Look, it’s a dax! Click on the dax!”). Over
the course of the experiment, each nonce word appeared with
exactly one object (the target) 3 times. Each nonce word ap-
peared with another object 2 times, and the word was paired
with every other object no more than once (see Figure 3).

At test, the blocks were tested in reverse order, with the
post-flush target block first, ensuring that participants would
still have access to any post-flush words encoded in the mem-
ory buffer. Next, participants were tested on words from the
intervening flush block, and lastly, words from the pre-flush
target block. Within blocks, the words were shown in the
same order at learning and test. At test, participants selected
from nine referents.

Conditions Participants were assigned to either the Same-
First or Switch-First condition. The only difference between



(a) Same-First condition

(b) Switch-First condition

Figure 2: Sample trials in each condition. The green circles
mark the target object, e.g. the book. The red squares mark
the participant’s selections. In the Same-First condition (a),
the selected referent on Exposure 1 becomes the target and
is present on all subsequent exposures. In the Switch-First
condition (b), two of the three un-selected referent objects
are present in Exposure 2 (the sandwich and the wrench). The
selection at Exposure 2 determines the target object.

conditions was whether the target word trials in Blocks 2 and
4 afforded participants the opportunity to sufficiently confirm
their hypothesized meanings–and, theoretically, move these
words from the memory buffer into the lexicon.

In the Same-First condition, the referent object selected by
the participant on a word’s first exposure became the target
object and was therefore present and available for confirma-
tion on the second and third exposures–providing the oppor-
tunity for it to move into the lexicon. In the Switch-First con-
dition, two of the three un-selected referent objects from the
first exposure were shown in the second exposure, providing
participants with a 50% chance of selecting an object present
on the prior exposure. If either of these objects was selected,
that object become the “target” on the third exposure and test.
If neither was selected on Exposure 2, the “target” was arbi-
trarily assigned as one of those two objects. Thus, just as in
the Same-First condition, the target was always present on
all three exposures in the Switch-First condition, but now, it
could be selected at most twice, ensuring it did not move into
MBP’s lexicon. In both groups, the 10 nonce words in the
warm-up and intervening flush had a switch-first manipula-
tion, with participants’ first selection always being incorrect.

Predictions

Learning Phase Given that MBP is built with a base of
the hypothesis-testing model Pursuit (Stevens et al., 2017),
MBP predicts hypothesis-testing behavior at learning (cf.
Trueswell et al., 2013). There are two key signatures of
this hypothesis-testing behavior. First, when the target ob-

ject has not been selected before, participants will select it at
chance levels, even when it has previously co-occurred with
the word. Second, when the target object has been selected
on a prior trial, participants are very likely to select it again:
assuming that the word is maintained in the memory buffer,
the model will always choose the previously selected referent
as its best hypothesis.

This enables MBP to make predictions about the distribu-
tions of token counts for the number of times the target object
was selected during the learng phase for the different condi-
tions. In the Switch-First condition, MBP predicts that ap-
proximately half of the words will have 2 target-referent se-
lections (i.e., over 3 exposures, learners will select the target
twice). This is because after the first exposure, where the tar-
get object is guaranteed to go unselected, participants have a
50% (2/4) chance of selecting a target object on the second
exposure. If they select the target on that exposure, MBP pre-
dicts they will also do so on the third exposure, assuming the
word is maintained in the memory buffer. If they fail to select
a target on the second exposure, MBP predicts they will se-
lect the target at chance rates (1/4) on the third exposure. In
contrast, in the Same-First condition, MBP predicts most to-
kens will have 3 target-referent selections. This is because the
second exposure always contains the referent object that was
selected at the first exposure. Thus, assuming that the word
is maintained in the memory buffer, as is expected approxi-
mately 75% of the time by MBP, participants should select
their previous hypothesized referent.

In contrast, a global learner should be more robust in rec-
ognizing previously unselected referents in subsequent expo-
sures. Specifically, in the Switch-First condition after the first
exposure, where the target object is guaranteed to go unse-
lected, 2 of the 4 objects should have a boosted association
score given their co-occurrence with the word in the first ex-
posure. Participants should therefore select between these
2 objects, rather than selecting at chance as a local learner
would. In addition, when the global learner does select one
of them, they should also select that object in the third ex-
posure, assuming that learners select their best hypotheses at
learning (as they do at test). Thus, in contrast to MBP, the
global model predicts that most words should have 2 target-
referent selections in the Switch-First condition (i.e., over 3
exposures, learners will select the target twice).

Test Phase This design tests the effects of both the condi-
tion manipulation (Same-First vs. Switch-First) and whether
learning occurred before or after the intervening “flush.”
MBP predicts both these main effects and their interaction
will be significant (Figure 3).

For the analysis of the results, we exclude items for which
the target referent was never selected in learning–it is not ex-
pected for learners to retain a mapping they showed no evi-
dence of forming. Additionally, for the Same-First condition,
only items with a sufficient number of hypothesis confirma-
tions (i.e. 3 target-referent selections) are included, as these
are the only items predicted by MBP to be in the lexicon.



Figure 3: MBP-predicted performance on the experiment.

For the condition effect, we expect that words in the Same-
First condition which are confirmed on every exposure should
be sufficiently confirmed to enter the lexicon, yielding robust
and highly accurate performance, while words in the Switch-
First condition should remain in the memory buffer, yielding
performance that is both more probabilistic and less robust
to interference. The second main effect examines the impact
of the intervening “flush.” MBP predicts that a majority of
the target words from the second block that were stored in
the memory buffer will be removed during the flush, so we
expect that performance on these words should be less accu-
rate than words stored in the memory buffer but learned after
the flush. Moreover, because the items in MBP’s lexicon are
more robust against the intervening flush, the difference be-
tween pre-flush and post-flush items in the Same-First condi-
tion is predicted to be smaller than the difference between the
pre- and post-flush items in the Switch-First condition.

In contrast, the global learner predicts, at most, a signifi-
cant effect of block. Given a strong enough memory decay,
the items in the pre-flush condition will not be retained as
well as those in the post-flush condition. However, the global
learner predicts no effect of condition: the object counts co-
occurring with a word in the two conditions are the same.

Results and Discussion
Here, we evaluate our empirical findings against the predic-
tions generated by MBP. For the analysis of the results, like
with model predictions, we exclude items for which the num-
ber of target referent selections did not reflect targeted behav-
ior, as described above (i.e., Exposures 2 or 3). After this
filtering, our analysis included 223 tokens for the Same-First
condition and 222 tokens for the Switch-First condition.

Learning Phase
In the learning phase, participants showed hypothesis-testing
behavior, as predicted by MBP. First, the number of target-
referent selections are shown below in Table 4.

Recall that in the Same-First condition, MBP predicts most
of the tokens will be selected 3 times. Human behavior is
slightly more error-prone but largely in line with this pre-
diction, with 70% of tokens having the target referent se-

Table 4: Target selections

# Target selections: 0 1 2 3

Same- Pre-flush – 17 45 98
first Post-flush – 6 29 125

MBP Pred. – ∼ 0 >0 <160
Global Pred. – ∼ 0 ∼ 0 ∼ 160

Switch- Pre-flush 50 48 62 –
first Post-flush 48 40 72 –

MBP Pred. ∼60 >20 <80
Global Pred. ∼ 0 ∼ 0 ∼ 160 –

Note. Human behavior supports MBP predictions of token counts of
different number of target-referent selections.

lected in all three exposures. In the Switch-First condition,
MBP predicts that just under half of the tokens will have
two target-referent selections (the maximum number in this
condition), while global models predict most tokens will re-
ceive two target-referent selections. Human behavior reflects
MBP’s prediction, with 42% of tokens receiving two selec-
tions (see Table 4). This suggests MBP’s memory-limited
hypothesis testing approach provides a strong fit to the trial-
by-trial learning patterns evident in adults’ cross-situational
word-learning.

Second, we compare differences in participants’ behavior
as a function of their previous selections. In the Switch-First
condition, the first exposure selection was always incorrect,
and in the Same-First condition, the first exposure selection
was always correct. We examine behavior on the 3rd expo-
sure based on whether the target object was previously se-
lected. When the target object was not selected in exposures 1
and 2, participants are at chance (M = 24.6%), whereas when
the target object was previously selected, participants selected
the target object at rates far above chance (M = 70.53% for the
Switch-First and 87.5% for the Same-First).

Test Phase

Figure 4 presents adults’ accuracy in selecting the target ref-
erent at test. We constructed a logistic mixed-effects model
predicting participants’ selection of the target referent on
each test trial, with fixed effects of Condition (Same-First
vs. Switch-First) and Block (Pre-flush vs. Post-flush), as
well as random effects of participant, item, and a Block-by-
participant random slope. The model revealed a significant
effect of Condition, β = 3.26, SE = 0.71, p < 0.001, with
higher accuracy in the Same-First condition than the Switch-
First condition. Thus, as predicted by MBP, participants’ ac-
curacy was significantly higher for items which they had con-
firmed three times, as opposed to only once or twice. We also
observed a significant effect of Block, β = 1.87, SE = 0.60,
p = 0.002, with higher accuracy for the post-flush block than
the pre-flush block. Moreover, the interaction between block



order and manipulation was significant, β = 1.22, SE = .60,
p = .041, indicating that the effect of Block was greater in
the Switch-First condition than in the Same-First condition.
These results indicate that, as predicted, words which learn-
ers confirmed three times are relatively robust to interference
from exposures to additional words, whereas words which
learners confirmed only once or twice were more vulnerable
to this interference. This pattern of performance, while not
as pronounced as in the MBP simulation results (see Figure
3), is consistent with the model’s key distinction between an
interference-resistant lexicon storing highly confirmed word
meanings and an interference-susceptible, size-limited mem-
ory buffer storing less certain word meanings.

Figure 4: Adults’ accuracy in selecting the target referent at
test. As predicted by MBP, there are significant main effects
and significant interactions. Error bars indicate standard error
over tokens.

The 95% confidence intervals are shown in Figure 4. While
the adults’ exact means are not identical to the MBP predic-
tions (Figure 3), the confidence intervals overlap for 3 of the 4
conditions, excluding the pre-flush portion of the Same-First
condition in which MBP overestimates human performance.

Conclusion
A central challenge of cross-situational word learning is re-
taining word-referent mappings across exposures. Here,
we evaluated Memory-Bound Pursuit (MBP), a hypothesis-
testing model of cross-situational word-learning which aims
to account for learners’ memory constraints. First, we found
that this model accounted well for both children’s and adults’
cross-situational word-learning success under varying levels
of ambiguity in previous findings from Smith and Yu (2007)
and Suanda et al. (2014). The model successfully captures
both patterns of performance by changing the value of a sin-
gle parameter: the average size of the memory buffer. The
choice of a smaller memory buffer for children is, of course,
in line with substantial work showing that children’s mem-
ory capacity increases over development. This finding also
suggests that child and adult word learning may share a sim-
ilar underlying mechanism, despite quite disparate levels of
absolute performance.

Our experimental results also support MBP’s predictions.
During learning, adults showed the expected hypothesis-
testing behavior, with little indication they preferred previ-
ously co-present but un-selected meanings over meanings that
had not previously co-occurred with the word. At test, learn-
ers were also more accurate in their selections when they had
confirmed the meaning three times, sufficient for the mean-
ing to enter MBP’s lexicon, than when they confirmed it only
once or twice, leaving it in MBP’s memory buffer. More
simplistic hypothesis-testing models (e.g., Trueswell et al.,
2013) cannot account for this pattern, as they do not posit
a role for additional confirmations of a hypothesis. More-
over, the word-referent mappings which MBP identified as
stored in the lexicon were also less susceptible to interfer-
ence from exposures to additional words (during the inter-
vening flush) than mappings which MBP identified as stored
in the memory buffer. This is consistent with MBP’s dis-
tinction between the more permanent lexicon and the size-
limited, interference-susceptible memory buffer. This pat-
tern cannot be accounted for by models of cross-situational
word-learning which do not incorporate memory limitations,
including both local (Stevens et al., 2017) and global (e.g,.
Fazly et al., 2010) models.

This result echoes recent calls to build memory processes
into our models of word learning (Bhat et al., 2021; Kacher-
gis et al., 2012; Vlach, 2019). Several of these memory-
based models, such as those proposed by Bhat et al. (2021)
and Kachergis et al. (2012), likely do not fully account for
both the hypothesis-testing behavior during learning and the
greater decline in learners’ retention of Switch-First items at
test, though future work is needed to directly test this ques-
tion. Indeed, MBP also does not provide a perfect fit to the
data: MBP overestimates participants’ ability to retain word
meanings stored in the lexicon across subsequent exposures
to other words. While a modest reduction in performance
after interference is compatible with prior memory research
(e.g., Sosic-Vasic et al., 2018), it suggests that either some
of these mappings did not truly enter the lexicon, despite 3
confirmations, or that more general interference factors affect
accuracy for words stored in the lexicon. Future work might
ask how factors like inter-trial interval, degree of ambiguity,
and individual differences in memory affect this relationship
between meaning confirmation and retention.

More broadly, we believe that MBP’s success in account-
ing for both child and adult performance across a range of
studies is especially notable given that it relies on only a sin-
gle parameter, which varies predictably with age. By increas-
ing the size of the memory buffer across age groups, MBP
provides a straightforward, memory-driven account of devel-
opmental changes in cross-situational word-learning without
postulating additional word-learning mechanisms or tuning
parameters. In short, by integrating a hypothesis-testing ap-
proach with insights from the memory literature, MBP pro-
vides a strong and straightforward baseline model of cross-
situational word-learning across development.
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